[[ header START ]]

Welcome to OS2.GURU site! (eComStation.RU)

Select your language: Russian English Deutch Spanish Italian Portuguese Czech Polish French

Frequently asked questions and answers:
telegram

æÏÒÕÍ ÏÂÓÕÖÄÅÎÉÅ

telegram

Send message

telegram

[ +7-981-8529467 (óÁÎËÔ-ðÅÔÅÒÂÕÒÇ)

telegram

t.me/os2_guru

OS/2 GURU


ru · en · de · es · it · pt · cz · pl · fr
OS/2 is a greatly different operating system for PC (ArcaOS, eComStation, IBM OS/2 Warp)
Applications, news, reviews, support of users, hardware, questions and answers.
 
[What is OS/2?  News  Install  Update  
 
 
Usage  Future  Community  Projects  

How to buy
russian OS/2 apps?

The concept of
OS/2 development

 
Update

 
Applications

 
Advantages:

 
For developer:

 
(ðÁÊÐÙ ÐÒÏÇÒÁÍÍ)

 
Companies:

 
History:

 
(âÏÎÕÓÙ)

 
Advice:

 
(âÁÒØÅÒÙ É ÒÅÛÅÎÉÑ)

 
Technologies:

 
(ðÒÉÍÅÎÅÎÉÅ × ÎÁÕËÅ, ÌÁÂÏÒÁÔÏÒÉÉ, ..)

 

 
Solutions

 
New eComStation:

 
Future:

 
(óÓÙÌËÉ ÎÁ ÄÒÕÇÉÅ ÓÁÊÔÙ)

 
(ëÁÒÔÉÎËÁ ÄÎÑ)

 
OS/2 artefacts:

 
Gadgets:

Upgrade ArcaOS to NeoWPS level

  • Install original PNG icons drawed by designer, specialized at OS/2 adornation.
  • Install eSchemes 2018 to change colors and buttons on desktop.

How to create own os2ldr


TITLE: How to create own os2ldr

DATE: 2008-03-27 16:52:47

AUTHOR: Pavel Shtemenko

Please use online translator
go to http://translate.google.com
and request the translation of http://en.ecomstation./showarticle.php?id=177
to your language

Introduction

It's not a secret that IBM decided to leave off OS/2 completely, even their excuses "support the customers until xxxx year" are just a way to redirect you in nowhere, for example, to linux. Firstly, they can't support physically, secondly all their support comes to "we advise you migrate to linux". I don't mind linux at all, let it live, but without me. That is why it is obvious that if OS/2 survives, it would be not thanks to IBM. Actually, this article is a step trying to show whether it is difficult to rewrite everything that depends on IBM. So, the first part of Marlezon Ballet - os2ldr as the very first thing that starts working if you load OS/2.

1. Where to begin

Of course from the studying of log from the debug os2ldr, it consists of:

OS2LdrD

This is clear, it is debug here also

ComPort 02f8

It's not less clearer where is the output

IODel 0113

It's a bit less obvious, but we will be deciphering completely IODelay, it is also known as DosIODelayCnt, in hex of course.

Model fc01

Judging by the name, it's a model of a computer, if we look closer in the output CPUID - we will definitely define that it is

CGetDHPhysMem

The name of the called function by definition PhysMem .... I think there is no copywrite to names?

I12 639

This is how much memory int 12h reported

I1588 15360

This is how much int 15h fn 88h reported

I15E8(AX) 15360

This is how much int 15h fn E8h reported

I15E8(BX) 1472

Number of blocks of 64K in extended memory

I15E8(CY) 0
I15E8 1472
I15C7Bytes 0

This stuff is history and should not be considered.

Let's conclude, we need memory which is up to 1mb and more, less than 1mb one would have to receive at int 12h, nobody tells more about that, and it could be on contemporary 640 or 639 (+ ExtBDA area). It is more cool to receive the current memory at int 15h fn E820h, that is ACPI. But as you understand, it is easier to fill in the fields I15E8, than to redo everything. I was not lazy to check on my test computer int 15h E800h gives a bit more memory than int 15h E820h (acpi), just more enough for a size of the ACPI table. The conclusion is obvious, os2ldr indeed uses int 15h E820h, but the output is shown as simple int 15h 8E00. What can I say, both start with E8h.

SysHi 0
SysEx 0
LocHi 0
LocEx 0
CacHi 0
CacEx 0
PadHi 0
PadEx 0
MCA Watchdog supported?: NO=0;YES=non-zero. Rslt=0000
NVRam  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AoxID 0
AoxQty 0
AoxMem  0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
AoxTrans  0 0 0 0 0 0 0 0 0 0 0 0

These are antiques connected with MCA and PS/x computers from IBM, they probably hope that at least one of them is still alive. That's why they are checking. It's clear that there is no sense to support this.

Int12 st 00000000 end 0009fbff
Int1588 st 00100000 end 00ffffff
Int15E8 st 01000000 end 06bfffff

This is the concluded output of RAM quantity detector.

Finder:
st 00000000 end 0009fbff loc 00000001 cac 00000000
st 00100000 end 00ffffff loc 00000000 cac 00000000
st 01000000 end 06bfffff loc 00000000 cac 00000000

This is all the same but in the way meant for writing kernel and miniFSD.

CPUUsable = 00000001
CPUWeAre = 00000001

How much is used and how much there is in general, I can say that in my DualCode it anyway shows exactly 1.

CPUXlateMem = 00000000
PhysMem:
Base 00000000 Sz 0009fc00 Loc 00000001 Cac 00000000
Base 00100000 Sz 06b00000 Loc 00000000 Cac 00000000
SLFrm len e000

Here is in fact the rounded size of a loader.

calling getdhgetdp

Calling Get Dos Help "Get drive parameters", why DosHelp who knows, it is called only here, but probably as everything disk at IBM is DASD, thus everything called in DosHelp

cbResMsg=0bbe, cbDscMsg=15d3

The size of resident messages and non-resident, further we see in os2ldr and understand that a looooong output like "IBM here please insert the next diskette, motherfucker" for sure should not be among resident. Having searched a little in DDK we find, file basemid.inc, where the numbers of messages which can be related to os2ldr.msg are contained. Let's pay attention that resident messages are available later on, after the OS/2 is completely loaded, that is why we just have to pick those that are possible after the loading - the remaining will be non-resident, a couple of tries and a table is ready.

cgvi
cldr

An attempt to define antiques keyboard and video

BaseMem1:
Base 00000000 sz 0009fc00
Base 00100000 sz 06b00000

The final verdict to the memory detector, we have this much and not bite more

HiLoad=00100000

Physical address where we will load the older (senior) part of kernel to

ldrseg=1000 ldrlen=e000 &filetbl=c9b0 bootfl=0014

Physical address of the loader = 1000h, its size, address of functions exported microFSD and flag of loading

Low/High/Ex Mem = 639/15360/94208 K

Here we once again show in a digestive way the memory detect and here we go loading the kernel

open

Opening the kernel file. Kinda like an attempt.

opened

Opened. I just "see" the stamp on the screen "IBM Checked" (signature "president xxxx")

KLBlock 0001
split
BaseMem2:
Base = 00000000 Sz = 0009fc00
Base = 00100000 Sz = 00f00000
Base = 01000000 Sz = 05c00000

An output of memory map

MFSDF 0001 00100000 00f00000 0000c7bc
mini-FSD 00ff3000

Here is copies miniFSD (aka os2boot) to the very tail of physical memory

ldr @ 010000 => 090000, len=e000

And here we finally came to the loader itself...

DHSeg=0100 DHLen=8b71

Selector 100h size 8b71h, that is selector 100 always, the 8000 resident loader can't take more (see the reasons in the next article "how to write your own os2krnl"). So just to inform God knows who. May be to scare the evil spirits of something, which didn't help OS/2 at all.

MLen=0bbe
endlopaddr => 0008c000
skipping SMP reserved GDT selectors

Skipping of SMP selectors - this is done in order to save loading of kernel exactly from 1800 selector, in the Real Mode the segment will also be 1800. All that is done so that in Real and Prot Mode there was the same cs:ip. It is very conveninent to jump from Prot to Real and back.

And finally we start copying the kernel file.

ob     flags    oi-flags   paddr/sel    glp     laddr/fladdr     msz/vsz
laddrnext2=ffd80000
01  rw--sfTLa-  00001063  00b000/0b00  0001  ff800000/ff800000  001000/000fb4
                                                                ^^^^^^^^^^^^^
                                                                physical address where we put it
                                             ^^^^^^^^^^^^^^^^^
                                             this is how it would look like in FLAT
                                        ^^^
                                       Index of the first page of the object in the kernel file
                          ^^^^^^^^^^^^
                          RM selector depending on type, look at Flags
                ^^^^^^^^^
                Flags of the segment in   binary
    ^^^^^^^^^^
    Flags of the segment in the symbolic way
^^
ordinal number in the file os2krnl

02  rw--sfTLaA  00005063  00c000/0c00  0002  ffd81000/ffd81000  00b000/00afb7
03  r-x-sfTLa-  00001065  018000/1800  000d  ffd8d000/ffd8d000  00a000/00941c
04  r-x-sf-LaA  00005025  022000/0120  0017  ffd97000/ffd97000  00f000/00e865
05  rw--sf-LaA  00005023  031000/0128  0026  ffda6000/ffda6000  00c000/00c455
06  rw--sN-LaA  0000d0a3  03e000/0130  0032  ffdb3000/ffdb3000  010000/010000
07  rw--sN-LaA  0000d023  04e000/0138  0042  ffdc3000/ffdc3000  003000/002a88
08  rw--sf-LaA  00005023  051000/0140  0045  ffdc6000/ffdc6000  003000/00580a
09  r-x-sf-haA  00005035  100000/0148  0048  ffe75000/ffe75000  003000/0029bc
0a  rw-BPf-h--  00002213  103000/0000  004b  ffe78000/00110000  001000/0001b0
0b  rw-BPf-h--  00002013  104000/0000  004c  ffe79000/00120000  003000/0027cc
0c  rw-Bsf-h-A  00006033  107000/0000  004f  ffe7c000/ffe7c000  02c000/030064
0d  r-x-sf-ha-  00001035  138000/0150  007b  ffead000/ffead000  010000/00fdf8
0e  r-x-sf-ha-  00001035  148000/0158  008b  ffebd000/ffebd000  010000/00ff60
0f  r-x-sf-ha-  00001035  158000/0160  009b  ffecd000/ffecd000  00f000/00ee04
10  r-x-sf-ha-  00001035  167000/0168  00aa  ffedc000/ffedc000  00f000/00e31c
11  r-xBsf-h-A  00006035  176000/0000  00b9  ffeeb000/ffeeb000  0d5000/0d4e69

So, now we can see that practically all the segments of os2ldr are loaded until 1mb and only 32 bit segments after, beginning with the first address after 1mb. I would like to note at once, not on all PC this may be 1mb, there may be even a hole in addressation. Please, note, the sizes, attributes and numbers of segments completely coincide with the header LX of kernel file.

laddrnext=ffe75000

here comes the last taken address, but already in FLAT

R0DS=0170 R0CS=0178

We say that such selectors are appointed on FLAT

endlopaddr 08c000 => 057000  endhipaddr 0024b000
pagemap 05f000, fixuppt 05fc74, fixuprecs 060400
k end paddr lo/hi 00057000/0024b000, zpaddr 00057000, zsize 8000
OS2Init=1800:7f4c

This is actually the address where we will make JMP after loader has done its job, it is extracted from LX exe and kernel, judging by os2krnl.sym file it is called SYIInitOS2.

Then we start rewriting from kernel everything we haven't rewritten, and at the same time we start making fix-up to 32 bit according to the found R0DS and R0CS. We do this for a long time but tasting the moment.

wait 0001 lo
wait 0002 lo
wait 0003 lo
wait 0004 lo
wait 0005 lo
wait 0006 lo
wait 0007 lo
wait 0008 lo
load 0009 hi
MoveHigh src=0000b000, dst=00100000, size=3000, remain=00000000

We copy a piece up, as A20 is included below, which means there is only one way - through int 15h, and we go on doing the same - copy and load.

load 000a hi
MoveHigh src=0000b000, dst=00103000, size=1000, remain=00000000
load 000b hi
MoveHigh src=0000b000, dst=00104000, size=3000, remain=00000000
load 000c hi
MoveHigh src=0000b000, dst=00107000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0010f000, size=8000, remain=00000000
IODelayCnt fixup laddr=ffe92c72

Here we found that a fix-up is needed, so we put it

MoveHigh src=0000b000, dst=00117000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0011f000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00127000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0012f000, size=4000, remain=00000000
load 000d hi
MoveHigh src=0000b000, dst=00138000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00140000, size=8000, remain=00000000
load 000e hi
IODelayCnt fixup laddr=ffec0a81
IODelayCnt fixup laddr=ffec0a8c
MoveHigh src=0000b000, dst=00148000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00150000, size=8000, remain=00000000
load 000f hi
MoveHigh src=0000b000, dst=00158000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00160000, size=7000, remain=00000000
load 0010 hi
IODelayCnt fixup laddr=ffee3572
IODelayCnt fixup laddr=ffee357c
IODelayCnt fixup laddr=ffee358a
IODelayCnt fixup laddr=ffee3591
IODelayCnt fixup laddr=ffee35a7
IODelayCnt fixup laddr=ffee35b6
IODelayCnt fixup laddr=ffee3551
IODelayCnt fixup laddr=ffee3481
IODelayCnt fixup laddr=ffee3545
IODelayCnt fixup laddr=ffee3538
IODelayCnt fixup laddr=ffee34ea
IODelayCnt fixup laddr=ffee34dd
IODelayCnt fixup laddr=ffee34ad
IODelayCnt fixup laddr=ffee349a
IODelayCnt fixup laddr=ffee3565
MoveHigh src=0000b000, dst=00167000, size=8000, remain=00000000
IODelayCnt fixup laddr=ffee66c0
MoveHigh src=0000b000, dst=0016f000, size=7000, remain=00000000
load 0011 hi
MoveHigh src=0000b000, dst=00176000, size=8000, remain=00000000
IODelayCnt fixup laddr=ffef4350
IODelayCnt fixup laddr=ffef464e
IODelayCnt fixup laddr=ffef465c
MoveHigh src=0000b000, dst=0017e000, size=8000, remain=00000000
IODelayCnt fixup laddr=ffefc774
IODelayCnt fixup laddr=ffefc76a
IODelayCnt fixup laddr=fff018cc
IODelayCnt fixup laddr=fff018c0
IODelayCnt fixup laddr=fff0187a
IODelayCnt fixup laddr=fff01870
MoveHigh src=0000b000, dst=00186000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0018e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00196000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0019e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001a6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001ae000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001b6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001be000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001c6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001ce000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001d6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001de000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001e6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001ee000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001f6000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=001fe000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00206000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0020e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00216000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0021e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00226000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0022e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00236000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=0023e000, size=8000, remain=00000000
MoveHigh src=0000b000, dst=00246000, size=5000, remain=00000000

Phew, looks like we copied everything and fixed-up it at the same time, so we can stretch up a bit on something almost needless

BIOS Seg 5700

We added BIOS as selector, it is absolutely not used afterwards

Dmp seg 5800

Selector for dump procedure

DBCS seg 6700

I personally have no place to look up the DBCS, I don't understand hieroglyphs.

FNT seg 6a00

The font segment for DBCS

rom
free lo

We freed a part of lower memory for the kernel and off we go to arrange the segments as they come

load 0001 lo
     ^^^^
     the first segment

load 0002 lo
     ^^^^
     the second segment

IODelayCnt fixup laddr=ffd84317

in here we do fix-up 32 bit on this address and so on in all the segments in SMP, total 17 pieces, which can be easily checked if you look at the header of LX file of the kernel

load 0003 lo
IODelayCnt fixup laddr=ffd8ee80
IODelayCnt fixup laddr=ffd90dea
IODelayCnt fixup laddr=ffd90de2
IODelayCnt fixup laddr=ffd90df6
IODelayCnt fixup laddr=ffd907b3
IODelayCnt fixup laddr=ffd90c6e
IODelayCnt fixup laddr=ffd907bc
IODelayCnt fixup laddr=ffd90c74
IODelayCnt fixup laddr=ffd95603
IODelayCnt fixup laddr=ffd955f3
IODelayCnt fixup laddr=ffd955e6
load 0004 lo
load 0005 lo
LObj zfil 0003d000 for 00000455
load 0006 lo
load 0007 lo
load 0008 lo
LObj zfil 00054000 for 0000280a
done 0009 hi
done 000a hi
done 000b hi
done 000c hi
done 000d hi
done 000e hi
done 000f hi
done 0010 hi
done 0011 hi
close

We close the kernel file

dmp len 00003a9d xBDA len 0400

Here we picked up ExtBDA area (look previously, it is reported as such that we already have), and also we picked up os2dump

sds init 01000949
dmp init 58000006
cfg 0010
no DBCS/FNT
term
termed
-16
nFAT

In the current situation microFSD, that is not FAT

DPEnd
+16
MemT
MemX
pa=00000000 sz=00001000 va=00000000 sel=0000 fl=2000 of=00000003 ow=0000

It's an output of the list of arenas - all memory blocks, ready before the kernel start. Look DebugHandBook about arenas. Here we have object of the kernel inself and blocks, where os2dump sits, microFSD, os2dbcs and its font, and all free memory, including blocks, which were defined but not used and thus marked as invalid.

pa=00001000 sz=00009740 va=ffe6b000 sel=0100 fl=2014 of=00001004 ow=ff6d
                                                                 ^^^^^^^
                                                                 Owner
                                                     ^^^^^^^^^^^
                                                     Flags of memory type
                                             ^^^^^^^
                                             Flags of arena type
                                    ^^^^^^^^
                                    Selector
                        ^^^^^^^^^^^
                        FLAT address
            ^^^^^^^^^^^
            Size
^^^^^^^^^^^
Physical address

pa=0000b000 sz=00000fb4 va=ff800000 sel=0b00 fl=2144 of=00001063 ow=ffaa
pa=0000c000 sz=0000afb7 va=ffd81000 sel=0c00 fl=2244 of=00005063 ow=ffaa
pa=00018000 sz=0000941c va=ffd8d000 sel=1800 fl=2344 of=00001065 ow=ffaa
pa=00022000 sz=0000e865 va=ffd97000 sel=0120 fl=2444 of=00005025 ow=ffaa
pa=00031000 sz=0000c455 va=ffda6000 sel=0128 fl=2544 of=00005023 ow=ffaa
pa=0003e000 sz=00010000 va=ffdb3000 sel=0130 fl=2644 of=0000d0a3 ow=ffaa
pa=0004e000 sz=00002a88 va=ffdc3000 sel=0138 fl=2744 of=0000d023 ow=ffaa
pa=00051000 sz=0000580a va=ffdc6000 sel=0140 fl=2844 of=00005023 ow=ffaa
pa=00057000 sz=00000900 va=ffe6a000 sel=5700 fl=2014 of=00000000 ow=ff6d
pa=00058000 sz=00003a9d va=00000000 sel=5800 fl=2001 of=00000000 ow=0000
pa=0005c000 sz=0000e000 va=00000000 sel=5c00 fl=2002 of=00000000 ow=0000
pa=0006a000 sz=00009000 va=ffe61000 sel=6a00 fl=2002 of=00000000 ow=ff21
pa=00073000 sz=0001d000 va=00000000 sel=0000 fl=2002 of=00000000 ow=0000
pa=00090000 sz=0000effc va=ffe52000 sel=0000 fl=2054 of=00001003 ow=ffab
pa=0009f000 sz=00000c00 va=00000000 sel=0000 fl=2002 of=00000000 ow=0000
pa=0009fc00 sz=00000400 va=ffe51c00 sel=0000 fl=2004 of=00000000 ow=ff37
pa=000a0000 sz=00060000 va=00000000 sel=0000 fl=0001 of=00000000 ow=0000
pa=00100000 sz=000029bc va=ffe75000 sel=0148 fl=0944 of=00005035 ow=ffaa
pa=00103000 sz=000001b0 va=ffe78000 sel=0000 fl=0a44 of=00002213 ow=ffaa
pa=00104000 sz=000027cc va=ffe79000 sel=0000 fl=0b44 of=00002013 ow=ffaa
pa=00107000 sz=00030064 va=ffe7c000 sel=0000 fl=0c44 of=00006033 ow=ffaa
pa=00138000 sz=0000fdf8 va=ffead000 sel=0150 fl=0d44 of=00001035 ow=ffaa
pa=00148000 sz=0000ff60 va=ffebd000 sel=0158 fl=0e44 of=00001035 ow=ffaa
pa=00158000 sz=0000ee04 va=ffecd000 sel=0160 fl=0f44 of=00001035 ow=ffaa
pa=00167000 sz=0000e31c va=ffedc000 sel=0168 fl=1044 of=00001035 ow=ffaa
pa=00176000 sz=000d4e69 va=ffeeb000 sel=0000 fl=1144 of=00006035 ow=ffaa
pa=0024b000 sz=00da8000 va=00000000 sel=0000 fl=0002 of=00000000 ow=0000
pa=00ff3000 sz=0000d000 va=ffe44000 sel=0000 fl=0024 of=00001003 ow=ff9d
pa=01000000 sz=00000000 va=00000000 sel=0000 fl=0001 of=00000000 ow=0000
pa=01000000 sz=05c00000 va=00000000 sel=0000 fl=0002 of=00000000 ow=0000
pa=06c00000 sz=00000000 va=00000000 sel=0000 fl=4000 of=00000000 ow=0000
SFence OK

This is kinda like a test of overloaded steck. First of all, what for, secondly, it gives nothing, thirdly, even if it gets overloaded, the kernel puts its own at once. Looks like it's some stuff left from the past years, when there existed its own debugger. Personally, I never saw such loader.

a20

Finally turned on A20

pDHt
rPIC

Made init 8259

j syi

Went to kernel and then we can see such note, that is if you have a cable to comport and put a debug kernel.

System Debugger 8/8/97 [80786]
MaxProcesses = 1025
Symbols linked (os2krnl)

                        OS/2 Warp Server for e-business
          (C) Copyright IBM Corp. 1987, 1999.  All rights reserved.
  US Government Users Restricted Rights - Use, duplication or disclosure
            restricted by GSA ADP Schedule Contract with IBM Corp.

Internal revision 14.039F_SMP

This is exactly where a part of direct interpretation of os2ldr ends, and start the indirect. So, one has to put DevHlp-ers from a physical address 1000, load all messages from os2ldr.msg, put the interrupt handler, put OEMHLP$ driver and provide some services. And now ask yourself, how difficult it is?

2. What to do next

First of all le't slook at .... of loader from the hobbes and read EDM/2, we see that interface to os2ldr from the "loader" is described in ifs.inf. Then we note that part of DevHlp is situated in the loader, so we will go the easiest way - AltF7 in fc and in all headers in DDK searching the DevHlp line. Almost immediately we discover a very interesting structure in doshlp.inc, called DosHlpFunction, then comes not less interesting structure KernelAccess. We look closer to macros in that same file, aha, DefDosHlp and DefDiscDosHlp. We recall that a part of the loader remains residential and another part having donw its work is dumped (???) dropped off as launcher stages. We also recall, that there are messages, but here it's simpler - they are all visible in os2ldr.msg and named in basemid.inc. Considering the standart for OS/2 work with MSG we conclude that they must be saved in the following way:

dw number of the message
dw Offset to text of message

So, we need to make a table to give it to kernel. The table of messages and a table of helpers, which sit in os2ldr. Then we read in English the names of helpers, look at pddref.inf to check call parameters and just write them. Mostly all are described in pddref.inf, but we find some exotic ones, like DosHelpInitInterrupts. So, we scratch the head and here in the debug window we notice - Hello! all the pointers from IDT are looking at os2ldr, it's resident 32bit part!!! Aha! Here is the deal, we understand, all interruption handlers must put os2ldr exactly upon the call of this function. Further, remembering acpi and its tought fight for share IRQ we know that we have to write in airqi table of kernel all pointers to these interruption handlers and the main! put the flag SHARE.

So we do, trying to load and understand that something is not right here... the driver OEMHLP$ is missing, ALTF7 on disk, gosh, it's in os2ldr...

We look around, we have to find out if there is something not documented in OEMHLP$. Suprirsinly, there is nothing, just defaults, that for example, it's not declared that number ioctl 80h... Knowing, that M$ starting to write it and that is had a very loving relations with high bits, we decide what the hec, let's repeat it that way.

Now we do according to DebugHandBook the parameters of kernelt, jmp to the input point and oh, miracle! it's loaded.

3. The result of the working day

It's possible to write and in bearable terms, there is nothing super secret here besides bugs. It's a half day job for a knowing engineer to write the task for programmers. IBM has given practically all the info. And, I think, it waited that the info will be taken and the mass will be created, but ah-ah, everybody hoped for IBM. May be that's why it turned to Lynux - droped the idea, lemmings start wander around and pervert it the best they can. Judging by JFS there are no boundaries to perversion.

The literature used (and recommended):

  • IBM DebugHandBook
  • IBM DDK pddref.inf
  • IBM DDK header and inc
  • ACPI standard
  • Ralf Brown's interrupt list

Test the program:

Central Remote Control - forward commands to multimedia applications

Komentarze:

Komentarz artyku³u.


Twoje Imiê i Nazwisko:

Twój E-Mail:

CODE:
......

  

Twój Komentarz:


Do you have problems with Network (slow, no connection, ..), Audio (hangs, clicks, ..), USB (attached devices are not visible, slow work, etc)? Start point: Configuring ACPI driver for eComStation 2.0 + Latest updates ACPI Frequently Asked Questions and Answers in 2011

Artyku³y

Systemy operacyjne
Software
Hardware
Dla developerów
Ró¿ne
Od autorów





Ostatnie g³osowanie: What is the height of RPM barrier?

[Google]

IBM OS/2 Warp

 
For dummies

Database of OS/2 compatible hardware

 
Reviews


     
  Why eComStation?
Features
Advantages
Usage
Clips and screenshots
   eComStation for
for businessmen
for students and engineers
for reselles of computers
community of users
   Developer
Distribute the program
Description of API, libraries
Start new project
Competition
   Applications
On-line catalogue
Select from eCo Market
   Support service
Contact the web-master
Buy eComStation
Frequently asked questions
for Beginners
 
 
© 2001 - 2021 eCo Software, All rights reserved
óÉÂÉÒÓËÉÊ íÅÄ×ÅÄØ ÔÅÈÎÏÌÏÇÉÞÅÓËÁÑ ËÏÍÐÁÎÉÑ
eComStation Serenity Systems International • OS/2 Warp IBM Corporation • ArcaOS Arca Noae